BHAGWANT INSTITUTE OF TECHNOLOGY, BARSHI. DEPARTMENT: FIRST YEAR Academic Year: 2019-20 | | Name of Subject | CO1 | CO2 | CO3 | CO4 | CO ₅ | CO6 | Program Outcomes | PSOs | |------------------------|--|---|---|--|--|--|--|---|---| | | Basic Civil Engineering | Understand the role of
various branches in civil
engineering | Understand the various properties of construction materials. | Explain the types of foundations | Explain the components of building. | Understand the basics of surveying and leveling. | Know the principles of
surveying and leveling | 1.Engineering knowledge:
engineering fundamentals, and
complex engineering problems | | | | Engineering
Chemistry | Students will able to know
the application of
chemistry in engineering
fields. | Students will able to
determine the quality
parameters of the water
sample | Students will able to
determine the effect of
various factors on one and
two component systems. | Students will able to know
the various steps involved
during the extraction of
metals from their ores. | Students will able to
determine the quality of
fuels and properties of
lubricant materials | Students will able to know
the basic concepts of
electrochemistry | 2.Problem analysis:
Identify, formulate, review
research literature, and
analyze
complex engineering
problems reaching
substantiated conclusions
using first
principles of mathematics,
natural sciences, and
engineering sciences. | 1.Apply basic
knowledge related to
the discipline to solve
engineering/ societal
problems. | | First
Year
SEM-I | Communication skills | Prepare good quality
communication by
avoiding barriers in
various formal and
informal situation. | Communicate skillfully
using non-verbal methods
of communication | Organize English speech
sound system, stress and
intonation | Formulate grammatically correct sentences. | Student can draft letters,
emails &reports using
corrects guidelines. | Demonstrate various soft
skills like team skills,
leadership, creativity, etc.
in different situations. | 3.Design/development of
solutions: Design solutions
for complex engineering
problems and design system
components or processes that
meet the specific needs
with appropriate
consideration for the public
health and safety, and the
cultural,
social, and environmental
considerations. | | | | Engineering Graphics | To understand read and
draw the geometry of
different engineering
objects. | Visualize and Draw
Orthographic Projection of
different objects | Interpret and draw the projection of line. | Interpret and draw the projection of Plane. | Visualize and Draw the
projection of Solid&
Section of Solid. | Visualize and Draw
Isometric Projection of
different objects | 4.Conduct investigations
of complex problems: Use
research-based knowledge
and research methods
including design of
experiments, analysis and
interpretation
of data, and synthesis of the
information to provide valid
conclusions. | | | | Energy &
Environmental
engineering | To recognize and
understand the variable
conventional energy
sources and power
production system. | To understand the reasons
for unconventional energy
requirement | To elect appropriate
energy conservation
method from future
perspective. | To understand the air
pollution term and their
reduction method | To understand the Water pollution term and their reduction method. | To understand the Soil,
Thermal, Noise pollution
and their reduction
method. | 5.Modern tool usage:
Create, select, and apply
appropriate techniques,
resources,
and modern engineering and
IT tools including prediction
and modeling to
complex engineering
activities with an
understanding of the
limitations. | 2.Recognize and adapt
to technical
developments and to
engage in lifelong
learning
and develop | | | Engineering Mechanics | Students should be able to
identify all the forces
associated with a static
frame work | Ability of the students to
construct free body
diagrams and to calculate
the reactions necessary to
ensure static equilibrium.
Solve the problems on
Centroid, Friction | Describe the motion of a
particle without analyze
the forces causing the
motion of a particle
Compute the Kinematics
problems | Describe the motion of a particle in terms of its position, velocity and acceleration in different frames of reference and to analyze the forces causing the motion of a particle. Compute the Kinetics problems | Students should be able to
explain the concept of
Work, Power | Students should be able to
Describe the concept of
Energy | 6.The engineer and
society: Apply reasoning
informed by the contextual
knowledge to assess societal,
health, safety, legal and
cultural issues and the
consequent responsibilities
relevant to the professional
engineering practice. | and develop
consciousness for
professional, social,
legal and ethical
responsibilities. | | | Mathematics | Student are able to
implement complex
number | Students are able to apply
principle of ODE of first &
second order | Student can demonstrate the LDE | Student can implement & solve problem of fourier series | Student can evaluate a
particular kind of problems
based on vector calculus in
surface difference | Student can evaluate a
particular kind of problems
based on vector calculus in
surface integral | 7.Environment and ssustainability: Understand the impact of the professional Dr. Babusaheb Ambedkar Technological University, Lonere engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. | | | | ENGG. PHYSICS | Students will able to know
the application of Physics
in engineering fields. | Solve the equations of free,
forced, damped
oscillations. | Determine the light
phenomenon like:
interference, refraction,
polarization. | Understand the nuclear
physics in engineering and
science. | Determine the types of
materials & crystal
structure. | Understanding of
applications of laser,
optical fiber, x-rays. | 8.Ethics: Apply ethical
principles and commit to
professional ethics and
responsibilities and norms of
the engineering practice. | | | First
Year
SEM-II | Basic Computer
Programming | Design flowchart /
algorithms for given
problem | Write, compile, debug & execute structured C programs by applying knowledge of various C Features like control and loop structures. | Write, compile, debug & execute structured C programs by applying knowledge of various C Features like array, pointer and function. | Apply features like
structure and unions
efficiently in small C
applications | Develop the use of the C
programming language to
implement various
algorithm, and
develop the basic concept
and terminology of
programming in general | Introduce the more
advanced features of the C
language | 9.Individual and team
work: Function effectively as
an individual, and as a
member or leader in diverse
teams, and in
multidisciplinary settings. | | |-------------------------|--|--|---|---|---|---|---|---|---| | | Basic Electrical &
Electronics
Engineering | Define the
fundamental
terms and elementary
concept of electrical
engineering | Describe the network of transmission and batteries | Define the term related to semiconductor devices | Describe the terms related
to digital system with
application. | | | io. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. | 3.Excellent
adaptability to the
changing industrial
and real world
requirements | | | Basic Mechanical
Engineering | Understand basic
principles of
thermodynamics | To study IC engine & automotive parts | Built to built engineering
knowledge about machine
design | Apply theoretical
knowledge to prepare
micro projects | Develop creative thinking
by team building and
brainstorming | To study basic knowledge
of mechanical engineering
for life skills. | II. Project management
and finance: Demonstrate
knowledge and
understanding of
the engineering and
management principles and
apply these to one's own
work, as
a member and leader in a
team, to manage projects and
in multi | | | | | | | | | | | 12 Life-long learning:
Recognize the need for, and
have the preparation and
ability
to engage in independent and
life-long learning in the
broadest context of
technological change. | | | | tec | |--|-----| | BHAGWANT INSTITUTE OF TECHNOLOGY, BARSHI. | | | BHAGWANT INSTITUTE OF TECHNOLOGY, BARSHI. | | | DEPARTMENT: Computer Science And Engineering | _ | | Academic Year: 2019-20 | _ | | | 7 | | | Name of Subject | CO1 | CO2 | CO3 | CO4 | CO ₅ | CO6 | Program Outcomes | PSOs | |--------|--|---|--|--|---|--|--|--|--| | | Discrete
Mathematics | Understand sets,
relations, functions and
discret structures. Apply
Propositional logic and
First orderlogic to solve
problems | Express and solve
number theoretic
problems using algebraic
properties of groups,
rings and
fields. | To design and develop
real time application
using
graph theory | Students would be able to model and analyze computational processes using analytic and combinatorial methods. | Students will be able to use the methods learnt as partof this subject in subsequent courses in the design and analysis of algorithms, theory of computation, and compilers. | Develop a discrete model
for a given
computational problem
and solve. | Engineering knowledge: Appengineering fundamentals, and complex engineering problems | | | | Data Structures
(BTCOC303) | Student should able to
know fundamentals of
data structures like
array, list, linked list,
stack, queue,
tree, graph, hashing | Student should able to identify suitable data structure for application | Student should able to use data structure to solve problems. | Student should able to implement various data structures and algorithm essential for implementing computer based solutions. | | | 2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. | | | Second | Computer
Architecture &
Organization
(BTCOC304) | To understand the basic hardware and software | Identify functional units,
bus structure and
addressing modes. | Students will be able to identify where, when and how enhancements of computerperformance can be accomplished. | Students will also be introduced to more recent applications of computer organization in advanced digital systems. | Identify memory
hierarchy and
performance. | | 3. Design/development of solutions: Design solution for complex engineering problems and design system components or processes that meet the specific needs with appropriate consideration for the public health and safety, and the cultural, social, and environmental considerations. | Apply basic knowledge
related to the
discipline to solve
engineering/ societal
problems. | | Year
SEM-I | Digital Electronics &
Microprocessors
(BTCOC305) | Define the fundamental
terms and elementary
concepts of Logiccs and
IC's. | Describe combinational circuits. |)Define the term related to sequential circuit. | Describe the term
related to
Microprocessor 8086. | | | Conduct investigations of
complex problems: Use
research-based knowledge
and research methods
including design of
experiments, analysis and
interpretation
of data, and synthesis of the
information to provide valid
conclusions. | | |----------------|--|---|---|--|--|---|--|---|--| | | Basic Human Rights
(BTHMC306) | Understand the history of human rights. | Learn to respect
others caste, religion,
region and
culture. | Be aware of their rights
as Indian citizen. | Understand the importance of groups and communities in the society. | Realize the philosophical
and cultural basis and
historical perspectives of
human rights. | Make them aware of
their responsibilities
towards
the nation. | Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations. | | | | Python
Programming
(BTCOL307) | 1)Develop a basic
understanding of the
Python
programming
language. | To learn how to design
and program Python
applications. | Demonstrate significant
experience with Python
program
development
environment. | Solve problems requiring the writing of well-documented programs in the Python language, including use of the logical constructs of that language. | | | The engineer and society:
Apply reasoning informed by
the contextual
knowledge to assess societal,
health, safety, legal and
cultural issues and the
consequent responsibilities
relevant to the professional
engineering practice. | Recognize and adapt
to technical | | | HTML and Javascript | Use a variety of strategies and tools to create websites. | Create a functioning web application suitable for portfolio presentation. | Learn the language of
the web: HTML and
CSS. | Understand and apply effective web design principles. | | | Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. | developments and to
engage in lifelong
learning
and develop
consciousness for
professional, social,
legal and ethical
responsibilities. | | | DAA | To recognize and
understand the variable
conventional energy
sources and power
production systems | To understand the reasons for unconventional energy requirement. | To elect the appropriate energy conservation method form future perspective. | To understand the air pollution term and reduction methods. | To acknowledge the resources of water pollution and reduction methods. | | Ethics: Apply ethical
principles and commit to
professional ethics and
responsibilities and norms of
the engineering practice. | | | | P&S | Define the fundamental
terms and elementary
concepts of electrical
engineering | Describe the network
of
transmission and
batteries | .Define the term related
to semiconductor
devices | Describe the terms
related to digital system
with application | | | Individual and team work:
Function effectively as an
individual, and as a
member or leader in diverse
teams, and in
multidisciplinary settings. | | | Second
Year | os | identify the importance
of operating system in
computing devices. | explain the
communication between
application programs
and hardware devices
through
System calls. | compare and exemplify
various scheduling
algorithms. | use appropriate memory
and file management
techniques | gain practical experience
with software tools
available in operating
system for system calls,
Threads, etc. | access control and
protection in an
operating system. | Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write | | | SEM-II | OOP in C++ | Acquirethe basics of object oriented concepts. | Illustrate theconcepts
like operator
overloading &
inheritance. | Illustrate the concept of polymorphism and streams. | Practicing use of
different features of
Object Oriented
Methodology like
templates,
exception handling etc. | Analyze object oriented concepts and their utility | Apply Object oriented
approach to design
complex C++ Program | 11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a | | | | NM | Understanding of Basic
of communication and
types | Comprehend English
speech sound system,
stress and intonation | Understand the basic
grammar principles | To study the four skills
(LSRW) in English
language | | | Life-long learning: Recognize
the need for, and have the
preparation and ability
to engage in independent and | Excellent adaptability
to the changing
industrial and real
world requirements | | | PDE | Solve the equations of free, forced, damped oscillations. | Determine the light
phenomenon like:
interference, refraction,
polarisation. | Understand the nuclear physics in engineering and science. | Determine the types of
materials & crystal
structure. | Understanding of
applications of laser,
optical fibre, x-rays. | | | | | | Database System | Define and apply the
basic concepts of
database
system, design,
relational model and
schemas. | Design principles for
logical design of
databases,
including the E-R
method and
normalization
approach for any real
time application | Evaluate, using relational algebra and SQL, solutions to a broad range of query problems in a relational DBMS. | Demonstrate an
understanding of
normalization
theory and apply such
knowledge to normalize
a
database. | Be familiar with the
basic issues of
transaction
processing (ACID
properties), different
methods of
concurrency control and
recovery techniques. | | | | | | | Students would be able | Understand formal
machines, languages and | | Develop analytical
thinking and intuition | The student will be able to demonstrate abstract | Students will be able to apply mathematical and | |----------------|---|---|--|--|--|--|---| | Third
Year | Theory of
Computation | to explain basic concepts
in formal language
theory, grammars,
automata theory,
computability theory,
and complexity theory | computations | models of computing,
including deterministic
(DFA), non-
deterministic (NFA) | for problem solving
situations in related
areas of theory of
computation | models of computing including Push Down Automata(PDA) and Turing (TM) machine models and their power to recognize the languages. | formal techniques for
solving problems in
computer science | | SEM-I | Machine Learning | Gain knowledge about
basic concepts of
Machine Learning | Identify machine
learning techniques
suitable for a given
problem | Solve the problems using various machine learning techniques | Apply Dimensionality reduction techniques. | Design application using machine learning techniques. | | | | Business
Communication | To participate in an online learning environment successfully by developing the implication-based understanding of Paraphrasing, deciphering instructions, interpreting guidelines, discussion boards & Referencing Styles. | To demonstrate his/her
ability to write error free
while making an
optimum use of correct
Business Vocabulary &
Grammar. | To distinguish among various levels of organizational communication and communication barriers while developing an understanding of Communication as a process in an organization. | To distinguish among various levels of organizations organization and communication and communication barriers while developing an understanding of Communication as a process in an organization. | To stimulate their
Critical thinking by
designing and
developing clean and
lucid writing skills | To demonstrate his verbal and non-verbal communication ability through presentations. | | | Compiler Design | | Differentiate between
methodologies required
for language translation. | Design various phases of
compiler | Implement various
phases of compiler
through use of
programming languages
and tools. | | | | | Computetr Network To demonstrate the purpose of different layers. | | To write application
layer protocols using
services offered by the
transport layer protocols
such as UDP, TCP &
SCTP. | To show the functioning
of DHCP, DNS and e-
mail system | | | | | Third | OOAD | | | | | | | | Year
SEM-II | ІоТ | To understand the
fundamentals of Internet
of Things | | To Learn about Building
state of the art
architecture in IoT. | To learn use of Devices,
Gateways and Data
Management in IoT. | To build a small low cost
embedded system using
Raspberry Pi. | To apply the concept of
Internet of Things in the
real world scenario | | | Development
Engineering | Explain different
definitions of
Development
Engineering | Identify & compare
engineer's role in
different societal issues. | Explain the importance of basic human rights. | Elaborate the
performance of
technology in different
international and global
issues. | Identify the role of
engineer for sustainable
development of society &
Environment. | • | | | Competetive
Programming-II | Apply algorithm techniques and methods. | Calculate processing
time and memory space
of algorithm. | Create good and correct
algorithm for problem
solving | c. | Identify and abstract the programming task involved | Choose the right data
representation formats
based on the
requirements of the
problem | | | Distributed System | Understand the basics of distributed systems and middleware. | Design and simulate distributed system software modules using various methods, strategies, and techniques presented in the course that fulfills requirements for desired properties. | Apply principles of
distributed systems in a
real
world setting across
multidisciplinary areas. | Apply knowledge of
Hadoop Distributed File
system, its architecture
and working for active
research at the
forefront of these areas | | | | | Machine Learning | m:cc .: . 1 . | | x 1 . 1100 | m 1 1 | | | | Final | Modern Database
System | Differentiate between
Distributed & Parallel
databases. | Implement object
oriented databases,
mining concepts | Implement different
query processing
algorithms. | Tabulate SQL, NoSQL &
New SQL with its
applications. | Articulate technologies
like Hadoop, MongoDB,
Cassandra, Pig , Hive. | Design and build a simple database system and demonstrate competence with the fundamental tasks involved with modeling, designing, and implementing a DBMS. | | Year
SEM-I | STQA | Understand what a
software bug is, how
serious they can be, and
why they occur. | Test software to meet
quality objectives &
requirements | Apply testing skills to
common testing tasks | Perform the planning
and documentation of
test efforts | Understand software
quality concepts,
assurance &
standards | Use testing tools to test
software in order to
improve test efficiency
with automation | | | Data Mining | Examine the types of the data to be mined for a particular application. | Apply preprocessing statistical methods for any given raw data. | Select and apply proper
data mining algorithms
to build analytical
applications | Understand
and
differentiate between
different types of
clusters | Comprehend the roles
that data mining plays in
various fields and
manipulate different
data mining techniques | Demonstrate and apply a
wide range of Clustering,
Classification and
association rule mining
algorithms | |-------------------------|----------------------|--|--|---|---|---|---| | | Information Retrival | Acquire concepts of
Information retrieval &
Web retrieval System. | Demonstrate the
performance of
information retrieval
systems.(Application) | Explain different
querying patterns in
retrieval models.
(Understand) | Explain different
indexing structure like
inverted index, hash
files, suffix arrays for
given collection of
documents.
(Understand) | Demonstrate
multimedia IR system
and indexing on
multimedia data.
(Application) | Discuss architectural
issues of Digital
Libraries.(Understand) | | | MIS | Understand information systems and their uses | Use computerized
management
information systems | Understand analysis and decision making. | Apply modern project management techniques. | Aware of security issues
related to information
Systems | Analyse Different E-
commerce systems. | | | ICS | Recognize common
attack patterns, evaluate
vulnerability of an
information system and
establish a plan for risk
management. | Demonstrate how to
detect and reduce
threats in Web security,
how to secure a wireless
network. | Evaluate the authentication and encryption needs of an information system. | Explain the Public Key
Infrastructure process. | Evaluate a company's security policies and procedures. | Implement Firewall design principles and identify various intrusion detection systems and be able to achieve system security. | | Final
Year
SEM-II | Data Mining | Understand Data Mining
fundamentals, Data
Mining Principles | Identify appropriate
data mining algorithms
to solve real world
problems | Compare and evaluate
different data mining
techniques like
classification, prediction,
clustering and
association rule mining | Describe complex data types with respect to spatial and web mining | Benefit the user experiences towards research and innovation. integration. | | | | Cloud Computing | Explain the core concepts of the cloud computing paradigm: how and why this paradigm shift came about, the characteristics, advantages and challenges brought about by the various models and services in cloud computing. | Apply the fundamental
concepts in datacenters
to understand the
tradeoffs in power,
efficiency and cost. | Identify resource
management
fundamentals, i.e.
resource abstraction,
sharing and sandboxing
and outline their role in
managing infrastructure
in cloud computing. | Analyze various cloud
programming models
and apply them to solve
problems on the cloud | | | ### BHAGWANT INSTITUTE OF TECHNOLOGY, BARSHI. #### DEPARTMENT: CIVIL ENGG Academic Year: 2019-20 | | Name of Subject | CO ₁ | CO ₂ | CO ₃ | CO4 | CO ₅ | CO6 | Program Outcomes | PSOs | |-------|-----------------------|---|--|---|--|---|--|---|---| | | Building construction | Understand types of masonry structures | Understand composition of
concrete and effect of various
parameters affecting strength | Comprehend components of
building and there purposes | Comprehend the precast and
pre-engineered building
construction techniques | Draw plan, elevation and section of various structures. | Prepare detailed working
drawing for doors and
windows. | Apply the knowledge of mathematics, basic sciences, and mechanical engineeringto the solution of complex | Make the students
employable in
engineering industries. | | | Hydraulics-I | Calibrate the various flow
measuring devices | Determine the properties of fluid. | Understand fundamentals of
pipe flow, losses in pipe and
pipe network. | Visualize fluid flow
phenomena observed in
Civil Engineering
systems. | Explain Similarities between model and prototype. | Understand theories of
laminar and turbulent
flow. | Identify, formulate, research
literature, and analyze
complex mechanical
engineering problems
reaching substantiated | Motivate the students for higher studies and research | | | Mechanics of solids | Perform the stress-strain analysis. | Draw force distribution diagrams for members and determinate beams. | Find deflections in determinant beams. | Visualize force
deformation behavior of
bodies. | The students will be able to
analyze determinate
structural members subjected
to
different types of loadings. | The students will be able
to analyze special
structures such as
composite beams and
thin walled cylinders. | Design solutions for complex
engineering problems and
design mechanical
systemcomponents that meet
the specified needs. | | | econd | Surveying-I | Perform measurements in linear/angular methods. | Perform plane table
surveying in general
terrain. | Know the basics of leveling
and theodolite survey in
elevation and angular
measurements. | Solve numerical
problems on bearing,
leveling, traversing. | Use and adjust the levels,
theodolites, plane table and
total station. | Prepare plans, maps and
reports for surveying
projects | Use mechanical engineering research-based knowledge related to interpretation of data and provide valid conclusions. | | | Year | | | | | | | | | |--------------------------|-------------------------------------|---|--|---|---|---|--|---| | SEM-I | Engineering
Mathematics-III | On completion of the course,
student will be able to
formulate and solve
mathematical model of civil
engineering phenomena in
field of structures, survey,
fluid mechanics and soil
mechanics. | Student can apply
Laplace and inverse
Laplace transforms for
solving linear
differential equations. | Student can express a
function in terms of sine and
cosine components so as to
model
simple periodic functions. | Student can evaluate counter integrations of complex functions. | Student can solve higher
order linear differential
equation with constant
coefficient | Student can evaluate counter integrations of complex function | Create, select, and apply
modern mechanical
engineering and IT tools to
complex engineering activities
with an understanding of the
limitations. | | | Engineering Geology | Recognize the different land
forms which are formed by
various geological agents. | Identify the origin,
texture and structure of
various rocks and
physical properties of
mineral | Emphasize distinct geological
structures which have
influence on the civil
engineering structure. | Understand how the
various geological
conditions affect the
design parameters of
structures. | Students will be able to draw geological maps. | This course will be able to
carry out preliminary
geological investigation
of site related to
civil engineering
projects. | Apply reasoning acquired by
the
mechanical engineering
knowledge to assess societal
and safety issues. | | | Soft Skills Development | | | | | | | Understand the impact of engineering solutions on the environment, and demonstrate the knowledge for sustainable development. Apply ethical principles | | | Hydraulics-II | Design open channel sections
in a most economical way | Know about the non-
uniform flows in open
channel and the
characteristics of
hydraulic jump. | Understand application of
momentum principle of
impact of jets on plane | Exhibit the analytical
capabilities of pressure
and velocity distribution
in an open channel in
order to solve practical
problems. | The students will be able to
apply their knowledge of fluid
mechanics in addressing
problems in open channels | Develop basic knowledge
of open channel flow. | Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings | | | Structural Mechanics | Describe the concept of
structural analysis, degree of
indeterminacy | Calculate slopes and
deflection at various
locations for different
types of beams. | Identify determinate and
indeterminate trusses and
calculate forces in the
members of trusses | Perform the distribution of the moments the in continuous beam and frame | | | Communicate effectively
on complex engineering
activities with the
engineeringcommunity
and with society at large. | | Second
Year
SEM-II | Surveying-II | Understand basics different
types of curves on roads and
their preliminary survey. | Perform setting of
curves, buildings,
culverts and tunnels | Comprehend different
geodetic methods of survey
such as triangulation,
trigonometric levelling | Comprehend modern
advanced surveying
techniques. | Understand the advantages of
electronic surveying over
conventional surveying
methods | | Understand the engineering and management principles and apply these to themultidisciplinary environments. | | | Product Design
Engineering | Create simple design of
components or a system
whole | Create design documents
for knowledge shearing. | Manage own work to meet design requirements. | Work effectively in team. | | | Recognize the need for life-
long learning in the broadest
context of technological
change. | | | Engineering Management | Demonstrate the nuances of management functions. | Analyze the framework of a business organization. | Adopt an empirical approach toward business situations. | Apply various
Management techniques. | Recognize the fundamentals
of Management thoughts that
are vital
for the development of
conceptual frame work of
Management as a | Apply the principles of
decision making through
planning,
organizing, staffing,
directing and controlling | | | | Numerical Methods in
Engineering | Able to learn Sources of error in computation and its propagation. | Able to learn Simple
polynomial interpolation
on equally &
unequally spaced data. | Able to learn Trapezoidal &
Simpson's 1/3rd Rules. | Able to learn Iterative
and Matrix-Factorization
methods for system
of linear equations. | Able to learn Finding root by
Regula Falsi and Newton-
Raphson
methods | Able to find root by
Regula Falsi and Newton-
Raphson methods. | | | | | Identify and compute the | Analyze and design the | Analyze and design various | | | | | | | Design of Steel
Structures | design loads and the stresses
developed in the steel
member. | various connections and identify the potential failure modes. | tension, compression and
flexural members. | Understand provisions in relevant BIS Codes | | | | | | Soil Mechanics | Understand different soil properties and behavior. | Understand stresses in
soil and permeability and
seepage aspects. | Develop ability to take up soil
design of various foundations. | Explain Rankin's and
Coulomb's earth pressure | Explain Terzaghi's theories. | Know the theory of shear
strength and its
determination. | | | | Environmental
Engineering | Apply the water treatment concept and methods | Prepare basic process
designs of water and
wastewater treatment | Apply the wastewater
treatment concept and
methods. | Apply the solid waste management concepts. | Public awareness of
environmental is at infant
stage. | Development and
improvement in std. of
living has lead to serious | | | Third
Year
SEM-I | Transportation
Engineering | The students will be able to
carry out geometric design
and pavement design of roads
for particular nature and
intensity of traffic as per IRC
standards. | The student will be able carry out testing various road construction materials in Laboratory using modern equipments & instruments and draw appropriate conclusions regarding their usability. | The student will be able to
undertake traffic studies and
adopt appropriate traffic
signals | Comprehend to various types of pavements | Design the pavements by
considering various aspects
associated with traffic safety
measures. | Comprehend various
types of transportation
systems and their history
of the development | | | Structural Mechanics-II | Have a basic understanding
of matrix method of analysis
and will be able to analyze the
determinant structure. | Have a basic
understanding of the
principles and concepts
related to finite
difference and finite
element methods | | | | | |---|---|---|---|--
--|---| | | | | | | | | | | | | | | | | | Building Planning &
Design | To plan buildings considering
various principles of planning
and bye laws of governing
body. | Comprehend various
utility requirements in
buildings | Understand various
techniques for good acoustics. | | | | | Design of concrete
structure-I | Comprehend to the various design philosophies used for design of reinforced concrete. | Analyze and design the
reinforced concrete slab
using limit state and
working state method. | Analyze and design the
reinforced concrete beam
using limit state and working
state method. | Use IS code of practice for the
design of concrete elements | Design the beams, slab
and columns | Design and prepare detailed
drawings of various RCC
structural elements | | Foundation Engineering | To predict soil behavior under
the application of loads and
come up with appropriate
solutions to foundation
design queries. | Analyze the stability of slope by theoretical and graphical methods. | Analyze the results of in-situ
tests and transform
measurements and associated
uncertainties into relevant
design parameters. | Synthesize the concepts
of allowable stress
design, appropriate
factors of safety, margin
of safety, and reliability. | Know the concept of deep and
shallow foundation. | Explain types of slope
failure | | Concrete Technology and properties of ingredients behavior of the | | Understand effect of
admixtures on the
behavior of the fresh and
hardened concrete. | Formulate concrete design
mix for various grades of
concrete. | | | | | Project Management | Understand various steps in
project Management,
different types of charts. | Construct network by
using CPM and PERT
method. | Determine the optimum
duration of project with the
help of various time
estimates. | Know the concept of
engineering economics,
economic comparisons,
and linear break even
analysis problems | Understand the concept of
total quality Management
including Juran and
Deming's philosophy | | | | | | | | | | | | | | | | | | | Quality Surveying and
Valuation | Prepare estimate for Building,
road, canal works. | Calculate Quantity of
material required for
civil engineering works
as pe specification | Evaluate contracts and tenders n construction practices. | Prepare rate analysis for
different works. | Carry out valuation of land and buildings. | Demonstrate
professional ethics in
Civil Engineering sector. | | Engineering
Management-II | Plan the project and prepare
Bar chart and Network to
optimize the project duration
and cost | Update the network and reevaluate the resources. | Demonstrate the decision
making abilities based on
economics in projects and to
appraise alternative projects | Analyze life cycle cost and
value of the project. | Use appropriate project
management application
software for planning,
tracking and reporting
progress of civil engineering | | | Design of concrete
structure-I | Use IS code of practice for the
design of concrete elements | Analyze and design the
reinforced concrete slab
using limit state method. | Design and prepare detailed
drawings of various RCC
structural elements | Comprehend to the various design philosophies used for design of reinforced concrete. | Analyze and design the reinforced concrete beam using limit state method. | | | Earthquake Engineering | Apply the Principles of
Earthquake Engineering in
planning, design and | Demonstrate the
dynamic analysis of
structures under | Incorporate Earthquake
resistant features for various
types of construction. | | | | | Air pollution and control | Identify the sources of air pollutants and their effect on human, plants and materials. | Apply knowledge of
meteorology for
controlling air pollution | Design of air pollution controlling equipments. | Use knowledge of
legislation for prevention
and control of air
pollution | Design of concrete
structure-II | Design of staircases and
footing by Limit State Method | Design of counter fort
retaining walls and RCC
water tanks by
approximate and
Indian Standard method | Design a prestressed concrete
beams accounting for losses | | | | | Construction Practices and town planning | Prepare layout of small towns | Identify and select
various inputs for town
planning | Calculate output of construction machines | Execute various items of
construction work using
construction machinery
and adopt
appropriate safety | | | | | Building Planning & Design of concrete structure-I Foundation Engineering Concrete Technology Project Management Quality Surveying and Valuation Engineering Management-II Design of concrete structure-I Earthquake Engineering Air pollution and control Design of concrete structure-II Construction Practices | Structural Mechanics-II and will be able to analyze the adverminant structure. Building Planning & Design of concrete structure-I Comprehend to the various design philosophies used for design of reinforced concrete structure-I Foundation Engineering To predict soil behavior under the application of loads and come up with appropriate solutions to foundation design queries. Concrete Technology Understand the various types and properties of ingredients of concrete. Project Management Understand various steps in project Management, different types of charts. Quality Surveying and Valuation Prepare estimate for Building, road, canal works. Plan the project and prepare Bar chart and Network to optimize the project duration and cost Use IS code of practice for the design of concrete elements design of concrete elements. Air pollution and control Identify the sources of air polanting, design and Identify the sources of air pollutants and their effect on human, plants and materials. Design of concrete structure-I Design of staircases and footting by Limit State Method | Have a basic understanding of the determinant structure. | Have a basic understanding of the offerminant structure. Industry method of analyse the determinant structure. Industry the principles and concepts and bye have algorering and bye have algorering body. Industry the principles of planning and bye have algorering body. Industry the principles of planning and bye have algorering body. Industry the principles of planning and bye have algorering body. Industry the principles of planning and bye have algoreries. Industry the principles of principles of principles of principles of principles of principles of of concrete and come up with appropriate of concrete and properties of ingredients of concrete. Industry the principles of almost the project duration and cost. Industry the project duration and cost. Industry the project duration and cost. Industry the principles of concrete structure. Industry the project duration and cost. Industry the project duration and cost. Industry the project duration and cost. Industry the principles of planning, design and properties of ingredients of concrete concrete shall be project duration and cost. Industry the principles of concrete concr | Structural Mechanica-II If there a basic understanding of middle and substantial for the concept of difference and finite element methods For plan building Planning & To plan building considering and by less of governing body. Design of concrete structure-I Design of concrete structure-I To predict soil behavior under despite the form of the planting solution to foundation solutions of concrete solutions of the project data of concrete solutions of the project data of the project data of the concrete solutions project data
of the concrete solutions project data of the concrete solutions of the project data of the project data of the concrete solutions of the project data of the project data of the concrete solutions of the project data of the project data of the concrete solutions of the project data of the project data of the project data of the project data of the proj | Structural Mechanics II and stills believe about condensation of the determinant structure. Possign of concercte | | Final
Year
SEM-II | Transportation
Engineering-II | Perform geometric design for
the Railway tracks. | Learn different types of
structural components,
engineering properties of
the
materials, to calculate the
material quantities
required for construction | Design simple turnout at
points and crossings and
explain the working
principles of
railway interlocking system. | Design and plan airport
layout, design facilities
required for runway,
taxiway and
impart knowledge about
visual aids. | Identify components of Docks
and Harbour and their
working principles | | |-------------------------|---|---|---|--|---|---|--| | | Solid and hazardous
waste management | Suggest waste reduction and resource recovery methods | Explain various waste
disposal methods | Examine legal, political and
administrative considerations
in design and operation of
solid and hazardous waste
management | | | | | | | | | | | | | ## BHAGWANT INSTITUTE OF TECHNOLOGY, BARSHI. DEPARTMENT: E&TC ENGG. Academic Year: 2019-20 | Name of Subject | CO1 | CO ₂ | CO ₃ | CO4 | CO ₅ | CO6 | CO ₇ | CO8 | CO9 | CO10 | ram Outc PSOs | |--------------------------------|---|---|---|--|--|---|---|---|--|------|--| | Engineering
Mathematics-III | differential equation
using appropriate
techniques for | students will be able to
Solve problems related
to Fourier transform,
Laplace transform and
applications to
Communication systems
and Signal processing | students will be able to Obtain Interpolating polynomials, numerically differentiate and integrate functions, numerical solutions of differential equations using single step and multi-step iterative methods used in modern scientific computing. | students will be able to
Perform vector
differentiation and
integration, analyze the
vector fields and apply to
Electromagnetic fields. | students will be able to
Analyze conformal
mappings,
transformations and
perform contour
integration of
complex functions in the
study of electrostatics
and signal processing | | | | | | Apply the knowledg e of mathema tics, basic sciences, and electronic s and communi cation engineering to the solution of complex electronic stude emplored engineering of the stude engineering of the stude engineering of the stude engineering engineering engineering indus | | Analog Circuits | students will be able to
Understand the
characteristics of IC and
Op-Amp and identify the
internal structure. | | students will be able to
Derive and determine
various performances
based parameters and
their significance
for Op-Amp. | students will be able to
Comply and verify
parameters after exciting
IC by any stated method | students will be able to
Analyze and identify the
closed loop stability
considerations and I/O
limitations. | students will be able to
Analyze and identify
linear and nonlinear
applications of Op-Amp. | students will be able to
Understand and verify
results (levels of V & I) with
hardware implementation. | students will be able
to Implement
hardwired circuit to
test performance
and application for
what it is being
designed. | students
will be
able to
Underst
and and
apply
the
function
alities of
PLL. | | Identify, formulate , researchil terature, and analyze complex electronic s and communi cation mg in stude problems for high substanti and researching substantial | | Electronic Devices & Circuits | students will be able to
Comply and verify
parameters after exciting
devices by any stated
method | students will be able to
Implement circuit and
test the performance. | students will be able to
Analyze small signal
model of FET and
MOSFET. | students will be able to
Explain behavior of FET
at low frequency. | students will be able to
Design an adjustable
voltage regulator
circuits. | | | | | | Design solutions for complex engineering problems and design electronic s system components that meet the specified needs. | | | | | 1 | T | T | T | 1 | I | T T | Use | |---------------|--|---|--|--|--|--|---|---|-----|---| | Year
SEM-I | Network Analysis | students will be able to
Apply
knowledge of
mathematics to solve
numerical based on
network simplification
and it will be used to
analyze the same. | students will be able to
Design passive filters
and attenuators
theoretically and
practically. To apply
knowledge for design of
active filters as well as
digital filters and even
extend this to
advance adaptive filters. | students will be able to
Identify issues related to
transmission of signals,
analyze different RLC
networks. | students will be able to
Find technology
recognition for the
benefit of the society. | | | | | electronic s and communi cation engineeri ng research-based knowledg e related to interpreta tion of data and provide valid conclusions | | | Digital Logic Design | students will be able to
Use the basic logic gates
and various reduction
techniques of digital
logic circuit in
detail. | students will be able to
Design combinational
and sequential circuits. | students will be able to
Design and implement
hardware circuit to test
performance and
application | students will be able to
Understand the
architecture and use of
VHDL for basic
operations and Simulate
using
simulation software. | | | | | Create, select, and apply modern electronic s and communication engineering and IT tools to complex engineering activities with an understanding of the limitation s. | | | Basic Human Rights | students will be able to
Simply put, human
rights education is all
learning that develops
the knowledge, skills,
and values of human
rights. | students will be able to
Strengthen the respect
for human rights and
fundamental freedoms | students will be able to
Enable all persons to
participate effectively in
a free society. | students will be able to
Learn about human
rights principles, such as
the universality,
indivisibility, and
interdependence of
human rights. | students will be able to
Learn about regional,
national, state, and local
law that reinforces
international human
rights law. | students will be able to Learn and know about and being able to use global, regional, national, and local human rights instruments and mechanisms for the protection of human rights. | | | Apply reasonin g acquired by the electronic s and communi cation engineeri ng knowledg e to assess societal and safety issues. Understa | | | | | | | | | | | | Apply | | | | | | | | | | | | Function | | | Electrical Machines and
Instruments | students will be able to
formulate and then
analyze the working of
any electrical machine
using
mathematical model
under loaded and
unloaded conditions. | students will be able to
analyze the response of
any electrical machine | students will be able to
troubleshoot the
operation of an electrical
machine. | students will be able to
select a suitable
measuring instrument
for a given applica | students will be able to estimate and correct deviations in measurements due to the influence of the instrument and due to the accuracy of the instrument. | | | | effectivel y as an individual, and as a member or leader in diverse teams, and in multidisci plinary settings | | | Analog Communication
Engineering | students will be able to
Understand and identify
the fundamental
concepts and various
components of analog
communication systems. | students will be able to
Understand the concepts
of modulation and
demodulation
techniques. | students will be able to
Design circuits to
generate modulated and
demodulated wave. | students will be able to Equip students with various issues related to analog communication such as modulation, demodulation, transmitters and receivers and noise performance. | students will be able to Understand the concepts of modulation and demodulation techniques of angle modulation (frequency and phase). | students will be able to
Explain signal to noise
ratio, noise figure and
noise temperature for
single and
cascaded stages in a
communication system. | students will be able to
Develop the ability to
compare and contrast the
strengths and weaknesses
of various
communication systems. | | Communi
cate
effectivel
y on
complex
engineeri
ng
activities
with the
engineeri
ng
communit
y and
with
society at
large. | |--------------------------|-------------------------------------|---|--|--|--|--|--|--|--|---| | Second
Year
SEM-II | Microprocessor | Learner gains ability to
apply knowledge of
engineering in designing
different case
studies. | Students get ability to
conduct experiments
based on interfacing of
devices to or
interfacing to real world
applications. | Students get ability to
interface mechanical
system to function in
multidisciplinary
system like in robotics,
Automobiles. | Students can identify
and formulate control
and monitoring systems
using
microprocessors. | Students will design cost
effective real time
system to serve
engineering solution for
Global, social and
economic context. | This course understanding will enforce students to acquire knowledge of recent trends like superscalar and pipelining and thus finds recognition of continuous updation. | Learn use of hardware and software tools. | Develop interfacing
to real world
devices. | Understa
nd the
engineeri
ng and
manage
ment
principles
and apply
these to
the multi
disciplina
ry
environm
ents. | | | Signals and Systems | Students will be able to
Understand
mathematical
description and
representation of
continuous and discrete
time signals and
systems. | Students will be able to
Develop input output
relationship for linear
shift invariant system
and understand the
convolution operator for
continuous and discrete
time system. | Students will be able to
Understand and resolve
the signals in frequency
domain using Fourier
series and
Fourier transforms. | Students will be able to
Understand the
limitations of Fourier
transform and need for
Laplace transform and
develop the ability to
analyze the system in s-
domain. | Students will be able to Understand the basic concept of probability, random variables & random signals and develop the ability to find correlation, CDF, PDF and probability of a given event. | | | | Recogniz e the need for life-long learning in the broadest context of technolog ical change | | | Product Design
Engineering | students will be able to
Create simple
mechanical or other
designs | students will be able to
Create design
documents for
knowledge sharing | students will be able to
Manage own work to
meet design
requirements | students will be able to
Work effectively with
colleagues. | | | | | | | | | students will be able to
solve algebraic and
transcendental
equations by using
numerical techniques
and will be able to
compare different
numerical techniques
used for this purpose
and
also will be able to
choose a proper one as
per the requirement of
the problem. | students will be able to
solve a system of linear
equations with any
number of variables
using
different direct and
iterative numerical
techniques. | students will be able to
Understand the concept
of interpolation, finite
difference operators and
their relations,
and can apply different
interpolation techniques
on equi-spaced or non
equi-spaced data values. | students will be able to
Prepare them to write
computer programs for
the numerical
computational
techniques | students will be able to
Understand application
of the NMCP course in
many engineering core
subjects like
signal processing, digital
communication,
numerical techniques in
electromagnetics
etc. | students will be able to
Understand procedure-
oriented and object
oriented programming
concepts. | students will be able to
Capable of writing C and
C++ programs efficiently. | | | | | Electromagnetic Field
Theory | students
will
demonstrate the ability
to Understand
characteristics and wave
propagation on high
frequency transmission
lines | students will
demonstrate the ability
to Carryout impedance
transformation on TL | students will
demonstrate the ability
to Use sections of
transmission line
sections for realizing
circuit elements | students will
demonstrate the ability
to Characterize uniform
plane wave | students will
demonstrate the ability
to Calculate reflection
and transmission of
waves at media interface | students will
demonstrate the ability
to Analyze wave
propagation on metallic
waveguides in modal
form | students will demonstrate
the ability to Understand
principle of radiation and
radiation characteristics of
an antenna | | | | | Control System
Engineering | students will
demonstrate the ability
to Understand the
modeling of linear-time-
invariant systems using
transfer function and
state-space
representations. | students will
demonstrate the ability
to Understand the
concept of stability and
its assessment for linear-
time invariant systems. | students will
demonstrate the ability
to Design simple
feedback controllers. | | | | | | | | I | | | | students will | | students will | | | | | | |---------------|--|--|--|---|---|---|---|---|--|--------------------------------------|---------------------------------------| | | Computer Architecture | students will
demonstrate the ability
to learn how computers
work | students will
demonstrate the ability
to know basic principles
of computer"s working | demonstrate the ability
to analyze the
performance of
computers | students will
demonstrate the ability
to know how computers
are designed and built | demonstrate the ability
to Understand issues
affecting modern
processors (caches,
pipelines etc.). | | | | | | | Third
Year | Digital Signal Processing | students will be able to
Understand use of
different transforms and
analyze the discrete time
signals and systems. | | students will be able to
Capable of calibrating
and resolving different
frequencies existing in
any signal. | students will be able to
Design and implement
multistage sampling rate
converter. | students will be able to
Design of different types
of digital filters for
various applications. | | | | | | | SEM-I | Microcontroller and its
Applications | Learner gains ability to
apply knowledge of
engineering in designing
different case
studies. | Students get ability to conduct experiments based on interfacing of devices to or interfacing to real world applications. | Graduates will be able to
design real time
controllers using
microcontroller based
system. | Students get ability to
interface mechanical
system to function in
multidisciplinary system
like in robotics,
Automobiles. | Students can identify
and formulate control
and monitoring systems
using
microcontrollers. | Students will design cost
effective real time
system to serve
engineering solution for
Global, social and
economic context. | Learners get acquainted
with modern tools like
Programmers, Debuggers,
cross compilers
and current IDE i.e.
integrated development
environment tools. | Students get ability
to Learn importance
of microcontroller in
designing embedded
application. | get
ability to
Learn
use of | Develop
interfaci
ng to
real | | | Probability Theory and
Random Processes | students will
demonstrate the ability
to Understand
representation of
random signals | students will
demonstrate the ability
to Investigate
characteristics of
random processes | students will
demonstrate the ability
to Make use of theorems
related to random
signals | students will
demonstrate the ability
to To understand
propagation of random
signals in LTI systems | | | | | | | | | Data Structure &
Algorithms Using Java
Programming | student will be able to
impart the basic
concepts of data
structures and
algorithms. | student will be able to
understand concepts
about searching and
sorting techniques | student will be able to
Describe how arrays,
records, linked
structures are
represented in memory
and use them
in algorithms. | student will be able to
understand basic
concepts about stacks,
queues, lists trees and
graphs | student will be able to
enable them to write
algorithms for solving
problems with the help
of fundamental
data structures. | | | | | | | | Introduction to MEMS | students will be able to
Appreciate the
underlying working
principles of MEMS and
NEMS devices. | students will be able to
Design and model MEM
devices | Antennas and Wave
Propagation | students will be able to
Formulate the wave
equation and solve it for
uniform plane wave. | students will be able to
Analyze the given wire
antenna and its
radiation characteristics. | students will be able to
Identify the suitable
antenna for a given
communication system. | | | | | | | | | | Computer Network & Cloud Computing | students will be able to
master the terminology
and concepts of the OSI
reference model and the
TCP-IP
reference model. | students will be able to
master the concepts of
protocols, network
interfaces, and
design/performance
issues in
local area networks and
wide area networks. | students will be able to
be familiar with wireless
networking concepts. | students will be able to
be familiar with
contemporary issues in
networking technologies. | students will be able to
be familiar with network
tools and network
programming | students will be able to For a given requirement (small scale) of wide- area networks (WANs), local area networks (LANs) and Wireless LANs (WLANs) design it based on the market available component. | students will be able to For . | students will be able
to Configure DNS
DDNS, TELNET,
EMAIL, File
Transfer Protocol
(FTP), WWW,
HTTP,
SNMP, Bluetooth,
Firewalls using open
source available | | | | | Digital Image Processing | students will be able to
Review the fundamental
concepts of digital image
processing system. | students will be able to
Analyze images in the
frequency domain using
various transforms. | students will be able to
Categories various
compression techniques. | students will be able to
Interpret image
segmentation and
representation
techniques. | programming | component. | Students will be able to For a | software and tools. | | | | | CMOS Design | students will be able to
Design different CMOS
circuits using various
logic families along with
their circuit
layout. | students will be able to
Use tools for VLSI IC
design. | | 1 | | | | | | | | | Information Theory and
Coding | students will
demonstrate the ability
to Understand the
concept of information
and entropy | students will
demonstrate the ability
to Understand Shannon
"s theorem for coding | students will
demonstrate the ability
to Calculation of channel
capacity | students will
demonstrate the ability
to Apply coding
techniques | | | | | | | | | Power Electronics | students will
demonstrate the ability
to Build and test circuits
using power devices
such as SCR | students will
demonstrate the ability
to Analyze and design
controlled rectifier, DC
to DC converters, DC to
AC inverters | students will
demonstrate the ability
to Learn how to analyze
these inverters and some
basic applications | students will
demonstrate the ability
to Design SMPS. | | | | | | | | | Nano Electronics | students will
demonstrate the ability
to Understand various
aspects of nano-
technology and the
processes involved in
making
nano components and
material | students will
demonstrate the ability
to Leverage advantages
of the nano-materials
and appropriate use in
solving practical
problems. | students will
demonstrate the ability
to Understand various
aspects of nano-
technology and the
processes involved in
making
nano components and
material | students will
demonstrate the ability
to Leverage advantages
of the nano-materials
and appropriate use in
solving
practical
problems. | | | | | |-------------------------|--|---|---|---|---|--|--|--|--| | Third
Year
SEM-II | Android Programming | Students will
demonstrate the ability
to write simple GUI
applications, | Students will
demonstrate the ability
to use built-in widgets
and components | Students will
demonstrate the ability
to work with the
database to store data
locally, and much more. | | | | | | | | Digital System Design | students will
demonstrate the ability
to Design and analyze
combinational logic cir | students will
demonstrate the ability
to Design & analyze
modular combinational
circuits with
MUX/DEMUX,
Decoder,
Encoder | students will
demonstrate the ability
to Design & analyze
synchronous sequential
logic circuits | students will
demonstrate the ability
to Use HDL &
appropriate EDA tools
for digital logic design
and simul | | | | | | | Optimization
Techniques | students will be able to
Cast engineering
minima/maxima
problems into
optimization framework | students will be able to
Learn efficient
computational
procedures to solve
optimization problems | | | | | | | | | Project Management
and Operation Research | Student will be able to
Apply operations
research techniques like
L.P.P, scheduling and
sequencing in industrial
optimization problems | Student will be able to
Solve transportation
problems using various
OR methods. | Student will be able to
Illustrate the use of OR
tools in a wide range of
applications in
industries. | Student will be able to
Analyze various OR
models like Inventory,
Queing, Replacement,
Simulation, Decision
etc and apply them for
optimization | Student will be able to
Gain knowledge on
current topics and
advanced techniques of
Operations Research for
industrial solutions | | | | | | Augmented, Virtual and
Mixed Reality | students will be able to
develop 3D virtual
environments. | students will be able to
develop 3D interaction
techniques and
immersive virtual reality
applications. | | | | | | | | | Python Programming | students will be able to
Experience with an
interpreted Language. | students will be able to
build software for real
needs | students will be able to
Prior Introduction to
testing software | | | | | | | | Web Development and
Design | student will be able to
Develop the skill &
knowledge of Web page
design | student will be able to
Understand the
knowhow and can
function either as an
entrepreneur or can take
up jobs
in the multimedia and
Web site development
studio and other
information technology
sectors. | | | | | | | | | Employability & Skill
Development | student will be able to
Have skills and
preparedness for
aptitude tests | student will be able to Be
equipped with essential
communication skills
(writing, verbal and non-
verbal) | student will be able to
Master the presentation
skill and be ready for
facing interviews. | student will be able to
Build team and lead it
for problem solving. | | | | | | | | | | | | | | | | | | Computer
Communication
Network | student will be able to
Explain Data
Communications System
and its components. | student will be able to
Develop building skills
of subnetting and
understand routing
mechanisms. | student will be able to
Enumerate the layers of
the OSI model and
TCP/IP and explain the
function(s) of each layer. | student will be able to
Identify the different
types of network
topologies and protocols. | student will be able to
Acquaintance with the
basic protocols of
computer networks, and
how they can be used to
assist in
network design and
implementation | | | | | | Embedded System
Design | student will be able to
design, execution and
evaluation of
experiments on
embedded platforms | student will be able to
analysis, design and
testing of systems that
include both hardware
and software. | | | | | | | | | Satellite Communication | students will be able to
Explain basics of
satellite communication | students will be able to
Solve problems related
to orbital mechanism,
satellite link design. | students will be able to
Explain the different
types of earth stations. | students will be able to
Understand working
principle of GPS and
navigation system. | | | | | | Final
Year
SEM-I | Database Management
System | student will be able to
Define and apply the
basic concepts of
database system, design,
relational model and
schemas. | student will be able to
Design principles for
logical design of
databases, including the
E-R method and
normalization
approach for any real
time application. | student will be able to
Evaluate, using
relational algebra and
SQL, solutions to a
broad range of query
problems in a
relational DBMS. | student will be able to
Demonstrate an
understanding of
normalization theory
and apply such
knowledge to normalize
a
database. | student will be able to
Familiar with the basic
issues of transaction
processing (ACID
properties), different
methods of
concurrency control and
recovery techniques. | | | | |-------------------------|---|---|--|--|--|--|--|--|--| | | Image & Video
Processing | students will be able to
Develop and implement
algorithms for digital
image and video
processing. | students will be able to
Apply image and video
processing algorithms
for practical computer
vision applications. | | | | | | | | | Optimization
Techniques | students will be able to
Solve problems based on
classical optimization
techniques | linear programming methods. | students will be able to
Solve problems based on
unconstrained
optimization techniques. | students will be able to
Use modern techniques
for optimization | | | | | | | Electronic Product
Design | students will be able to
Obtain reliability of
electronic product | students will be able to
Design ergonomics of
electronic product | students will be able to
Design control panel | students will be able to
Analyze thermal design | students will be able to
Use CAD for electronic
product design | | | | | | Advanced Digital Signal
Proces | student will be able to
understand theory of
different filters and
algorithms | student will be able to
understand theory of
multirate DSP, solve
numerical problems and
write algorithms | student will be able to
understand theory of
prediction and solution
of normal equations | student will be able to
know applications of
DSP at block level. | | | | | | | I | | | Student can write | Student can describe | I | | | | | | Internet of Things | Student can elaborate different components of an IoT System. | Student can describe the
architecture Cortex M3
series ARM
microcontroller | interfacing program for
different applications
with
ARMmicrocontroller. | different communication
technologies and
application
protocolsused in IoT. | Student can elaborate
different cloud platforms
of IoT. | | | | | | Multimedia
Communication
Techniques | students will be able to
Understand the concept
of basic television signal
processing and different
types of multimedia data | students will be able to
Identify globally
accepted colour TV
standards | students will be able to
Demonstrate the need of
audio and video
compression techniques
in real life | students will be able to
Analyze different
compression algorithms. | students will be able to
Acquire knowledge of
latest digital TV systems
and applications | | | | | | VLSI
DESIGN | student will be able to
Explain different syntax
of VHDL language. | student will be able to
Design, simulate and
analyze combinational
and sequential logic
circuits using VHDL. | student will be able to
Explicate the terms
associated to MOS
transistor and CMOS
logic. | student will be able to
Implement logic gates
and simple Boolean
expression using CMOS
logic. | student will be able to
Describe CPLD and
FPGA architecture and
its internal components
and explain concept of
ASIC
and SOC. | student will be able to
Explain different testing
methods for
combinational and
sequential logic, IC
testing and write test
bench for simple
combinational circuit. | | | | Final
Year
SEM-II | Network Security | students will be able to
Recognize common
attack patterns, evaluate
vulnerability of an
information system &
establish a
plan for risk
management. | students will be able to
Demonstrate how to
detect and reduce
threats in Web security,
how to secure a wireless
network | students will be able to
Evaluate the
authentication and
encryption needs of an
information system. | students will be able to
Explain the Public Key
Infrastructure process | students will be able to
Evaluate a company's
security policies and
procedures | | | | | | Soft Computing | students will be able to
analyze and appreciate
the applications which
can use fuzzy logic. | students will be able to
design inference systems | students will be able to
understand the
difference between
learning and
programming and
explore practical
applications of Neural
Networks (NN). | students will be able to
appreciate the
importance of
optimizations and its use
in engineering fields and
other
domains. | students will be able to understand the efficiency of a hybrid system and how Neural Network and fuzzy logic can be hybridized to form a Neuro-fuzzy network and its various applications. | | | | | | DSP Processors &
Application | students will be able to
Apply mathematical
fundamentals to DSP
Processors | students will be able to
Use fundamentals of
Programmable DSP
Processors for different
applications | students will be able to
Write Assembly
language programs for
DSP Processors | students will be able to
Knowledgeable in the
architecture and
programming of
TMS320C5X,
TMS320C3X Processors
for real time applications | | | | | | | Data Analytics | student will be able to
Deploying the Data
Analytics Lifecycle to
address data analytics
projects. | student will be able to
Use the right method to
solve real problem. | student will be able to
Selecting appropriate
data visualizations to
clearly communicate
analytic insights. | student will be able to
Use the tools and
techniques to apply
different algorithms and
methodologies. | | | | | | | | - | | | | | | | | |--------------------------|--|--|--|---|---|---|--|---|--| | | Name of Subject | CO1 | CO2 | CO3 | CO4 | CO ₅ | CO6 | Document Only and a second | PSOs | | | Engineering
Mathematics-III | apply Laplace and
inverse Laplace
transforms for solving
linear differential
equations. | Student can express a
function in terms of sine
and cosine components
so as to model
simple periodic
functions. | Student can find the
relation between two
variables for the given
data using regression | | | | Apply the knowledge of mathematics, basic sciences, and mechanical engineering to the solution of complex engineering problems. | Make the students employable in engineering industrie | | | Materials Science
and Metallurgy | Study various crystal
structures of materials | Understand mechanical
properties of materials
and calculations of same
using appropriate
equations | Evaluate phase diagrams
of various materials | Suggest appropriate heat
treatment process for a
given application | Prepare samples of
different materials for
metallography | Recommend appropriate
NDT technique for a
given application | Identify, formulate, research
literature, and analyze
complex mechanical
engineering problems
reaching substantiated
conclusions | Motivate the students for higher studies and research. | | _ | Fluid Mechanics | Define fluid, define and calculate various properties of fluid | Calculate hydrostatic
forces on the plane and
curved surfaces and
explain stability of
floating bodies | Explain various types of
flow. Calculate
acceleration of fluid
particles | Apply Bernoulli's
equation and Navier-
Stokes equation to
simple problems in fluid
mechanics | Explain laminar and
turbulent flows on flat
plates and through pipes | Explain and use
dimensional analysis to
simple problems in fluid
mechanics | Design solutions for complex
engineering problems and
design mechanical system
components that meet the
specified needs | | | Second
Year
SEM-I | Machine Drawing
and CAD | Interpret the object with
the help of given
sectional and
orthographic views. | Construct the curve of intersection of two solids | Draw machine element
using keys, cotter,
knuckle, bolted and
welded joint | Assemble details of any
given part. i. e. valve,
pump, machine tool
part etc. | Represent tolerances
and level of surface
finish on production
drawings | Understand various
creating and editing
commands in Auto Cad | Use mechanical engineering research-based knowledge related to interpretation of data and provide valid conclusions | | | | Thermodynamics | Define the terms like
system, boundary,
properties, equilibrium,
work, heat, ideal gas,
entropy etc. used in
thermodynamics. | Study different laws of
thermodynamics and
apply these to simple
thermal systems like
balloon, piston-cylinder
arrangement,
compressor, pump,
refrigerator, heat
exchanger, etc. to study
energy balance. | Study various types of
processes like
isothermal, adiabatic,
etc. considering system
with ideal gas and
represent them on p-v
and T-s planes. | Apply availability
concept to non-flow and
steady flow type
systems. | Represent phase
diagram of pure
substance (steam) on
different
thermodynamic planes
like p-v, T-s, h-s, etc.
Show various constant
property lines on them. | | Create, select, and apply
modern mechanical
engineering and IT tools to
complex engineering activities
with an understanding of the
limitations. | | | | Basic Human Rights | Understand the history of human rights. | Learn to respect others
caste, religion, region
and culture. | Be aware of their rights as Indian citizen. | Understand the importance of groups and communities in the society. | Realize the philosophical
and cultural basis and
historical perspectives of
human rights. | Make them aware of
their responsibilities
towards the nation. | Apply reasoning acquired by
the mechanical engineering
knowledge to assess societal
and safety issues | | | | MANUFACTURING
PROCESSES -I | Identify castings
processes, working
principles and
applications and list
various defects in metal
casting | Understand the various
metal forming processes,
working principles and
applications | Classify the basic joining
processes and
demonstrate principles
of welding, brazing and
soldering. | Study center lathe and
its operations including
plain, taper turning,
work holding devices
and cutting tool. | Understand milling
machines and
operations, cutters and
indexing for gear
cutting. | Study shaping, planing
and drilling, their types
and related tooling's | Understand the impact of engineering solutions on the environment, and demonstrate the knowledge for sustainable development. | | | | THEORY OF
MACHINES-I | Define basic terminology
of kinematics of
mechanisms | Classify planar
mechanisms and
calculate its degree of
freedom | Perform kinematic
analysis of a given
mechanism using ICR
and RV methods | Perform kinematic
analysis of a given
mechanism analytically
using vector or complex
algebra method | Perform kinematic
analysis of slider crank
mechanism using Klein's
construction and
analytical approach | | Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering
practice | | | Second
Year
SEM-II | STRENGTH OF
MATERIAL | State the basic definitions of fundamental terms such as axial load, eccentric load, stress, strain, E, µ, etc. | Recognize the stress
state (tension,
compression, bending,
shear, etc.) and calculate
the value of stress
developed in the
component in
axial/eccentric static and
impact load cases. | Distinguish between
uniaxial and multiaxial
stress situation and
calculate principal
stresses, max. shear
stress, their planes and
max. normal and shear
stresses on a given
plane. | Analyze given beam for
calculations of SF and
BM | Calculate slope and
deflection at a point on
cantilever /simply
supported beam using
double integration,
Macaulay's , Area-
moment and
superposition methods | Differentiate between
beam and column and
calculate critical load for
a column using Euler's
and Rankine's formulae | Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. | | | | NUMERICAL
METHODS IN
MECHANICAL
ENGG. | Describe the concept of error | Illustrate the concept of
various Numerical
Techniques | Evaluate the given
Engineering problem
using the suitable
Numerical Technique | Develop the computer
programming based on
the Numerical
Techniques | | | Communicate effectively on
complex engineering activities
with the engineering
community and with society at
large. | | | | PRODUCT DESIGN
ENGINEERING-I | Create simple
mechanical designs | Create design
documents for | Manage own work to
meet design | Work effectively with colleagues | | | Understand the engineering
and management principles | | | | Interpersonal
Communication
Skill& Self
Development | Acquire interpersonal communication skills | Develop the ability to work independently. | Develop the qualities
like self-discipline, self-
criticism and self-
management. | Have the qualities of time management and discipline. | Present themselves as an inspiration for others | Develop themselves as good team leaders | Recognize the need for life-
long learning in the broadest
context of technological
change | | | | Heat Transfer | Explain the laws of heat
transfer and deduce the
general heat conduction
equation and to explain
it for 1-D steady state
heat transfer in regular
shape bodies | Describe the critical
radius of insulation,
overall heat transfer
coefficient, thermal
conductivity and lumped
heat transfer | Interpret the extended surfaces | Illustrate the boundary
layer concept,
dimensional analysis,
forced and free
convection under
different conditions | Describe the Boiling heat
transfer, mass transfer
and Evaluate the heat
exchanger and examine
the LMTD and NTU
methods applied to
engineering problems | Explain the thermal
radiation black body,
emissivity and
reflectivity and
evaluation of view factor
and radiation shields | | | | | Applied
Thermodynamics – I | Define the terms like
calorific value of fuel,
stoichiometric air-fuel
ratio, excess air,
equivalent evaporation,
boiler efficiency, etc.
Calculate minimum air
required for combustion
of fuel. | Study and Analyze gas
power cycles and vapour
power cycles like Otto,
Diesel, dual, Joule and
Rankine cycles and
derive expressions for
the performance
parameters like thermal
efficiency, Pm | Classify various types of
boiler, nozzle, steam
turbine and condenser
used in steam power
plant. | Classify various types of IC engines. Sketch the cut section of typical diesel engine and label its components. Define the terms like TDC, BDC, rc, etc. | Draw P-v diagram for
single-stage
reciprocating air
compressor, with and
without clearance
volume, and evaluate its
performance.
Differentiate between
reciprocating and rotary
air compressors. | | |-------------------------|---|--|--|---|--|---|--| | Third
Year | Machine Design – I | Formulate the problem
by identifying customer
need and convert into
design specification | Understand component
behavior subjected to
loads and identify failure
criteria | Analyze the stresses and
strain induced in the
component | Design of machine
component using
theories of failures | Design of component for
finite life and infinite life
when subjected to
fluctuating load | Design of components
like shaft, key, coupling,
screw and spring | | SEM-I | Theory of Machines-
II | Identify and select type
of belt and rope drive for
a particular application | Evaluate gear tooth
geometry and select
appropriate gears, gear
trains | Define governor and
select/suggest an
appropriate governor | Characterize flywheels as
per engine requirement | Understand gyroscopic
effects in ships,
aeroplanes, and road
vehicles. | Understand free and
forced vibrations of
single degree freedom
systems | | | Metrology and
Quality Control | Identify techniques to
minimize the errors in
measurement | Identify methods and devices for measurement of length, angle, and gear and thread parameters, surface roughness and geometric features of parts. | Choose limits for plug
and ring gauges | Explain methods of
measurement in modern
machineries | Select quality control
techniques and its
applications | Plot quality control
charts and suggest
measures to improve the
quality of product and
reduce cost using
Statistical tools. | | | Product Design
Engineering - II | Create prototypes | Test the prototypes | Understand the product
life cycle management | | | | | | Automobile
Engineering | Identify the different parts of the automobile | Explain the working of
various parts like engine,
transmission, clutch,
brakes etc., | Demonstrate various types of drive systems. | Apply vehicle
troubleshooting and
maintenance
procedures. | Analyze the environmental implications of automobile emissions, And suggest suitable regulatory modifications. | Evaluate future
developments in the
automobile technology. | | | Manufacturing
Processes- II | Understand the process
of powder metallurgy
and its applications | Calculate the cutting
forces in orthogonal and
oblique cutting | Evaluate the
machinability of
materials | Understand the abrasive processes | Explain the different
precision machining
processes | Design jigs and fixtures
for given application | | | Machine Design-II | Define function of
bearing and classify
bearings. | Understanding failure of
bearing and their
influence on its
selection. | Classify the friction
clutches and brakes and
decide the torque
capacity and friction
disk parameter. | Select materials and
configuration for
machine element like
gears, belts and chain | Design of elements like
gears, belts and chain for
given power rating | Design thickness of
pressure vessel using
thick and thin criteria | | Third
Year
SEM-II | Applied
Thermodynamics- II | Study engine
classification,
nomenclature, valve
timing, power cycles,
and combustion in SI &
CI. | Study starting systems,
ignition systems,
lubrication system.
Engine testing and
performance,
parameters. Apply for
solve problems. | Study various types of
air refrigeration systems,
VCC, VAB and represent
them on p-h and T-s
planes. | Study various properties
of moist air,
psychometric chart.
Controls in air
conditioning. | Study various sources of
energy for power plant,
cycles for steam and gas
turbine power plant. | Study various power plants. | | | Quantitative
Techniques in
Project Management | Define and formulate
research models to solve
real life problems for
allocating limited
resources by linear
programming. | Apply transportation and assignment models to real life situations. | Apply queuing theory for
performance evaluation
of engineering and
management systems. | Apply the mathematical
tool for decision making
regarding replacement
of items in real life | Determine the EOQ,
ROP and safety stock for
different inventory
models. | Construct a project
network and apply CPM
and PERT method. | | | Solar Energy | Describe measurement
of direct, diffuse and
global solar radiations
falling on horizontal and
inclined surfaces. | Analyze the performance
of flat plate collector, air
heater and concentrating
type collector. | Understand test
procedures and apply
these while testing
different types of
collectors. | Study and compare
various types
of thermal
energy storage systems. | Analyze payback period
and annual solar savings
due to replacement of
conventional systems. | Design solar water
heating system for a few
domestic and
commercial applications | | | Automatic Control
Engineering | To make the students
aware of basic
mathematical analysis
techniques used for
Automatic control
systems. | 2) To make use of the
software MATLAB to
solve simple problems in
control Engg. as a part of
Term-Work | | | | | | | Operations Research | Apply various optimization techniques to industrial applications. | Develop a project plan
for the industry or
organization. | | | | | | Final
Year
SEM-I | Refrigeration and Air
Conditioning | Analyze basic
refrigeration cycles and
air refrigeration systems | Select proper refrigerant and appropriate refrigeration system based on application | 3. Define and estimate
psychometric properties | 4. Estimate cooling and
heating load calculations
and design air
conditioning system for
different applications | | | | | | | | | | | | | | Automobile
Engineering | Demonstrate & explain various systems in an automobile | 2. Describe importance
and features of different
elements like axle,
differential, brakes,
steering, suspension,
wheel balancing etc. | 3. Explain principle of
operation, construction
and applications of
various sensors used in
modern automobile | | | |---------------|---|--|--|---|--|--| | | Entrepreneurship
Development | Avail various government facilities required to set-up small unit. | manufacturing or service unit. | | | | | | Industrial & Quality
Management | Demonstrate various management functions. | Apply statistical tools to industrial / organizational problems. | | | | | Final
Year | Industrial
Engineering | Analyze & measure productivity. | Perform method study
and work measurement
etc. | 3. Develop improved
method of
working/process for
manufacturing /service
sector. | | | | SEM-II | Production and
Operation
Management | Apply the principles and techniques used in production management. | 2. Solve the problems related to production. | | | | | | Plastic Engineering | Select the plastic
materials for particular
end user application | 2. Predict the structure
and properties of
different kind of plastic
material | 3. Know the processing
of different plastic
material based on the
end user requirement. | | |